
GROUP SDMAY24-13

Allergy Prediction Using Artificial 
Intelligence

Eric Christensen, Zoe Davis, Josh Dutchik, Blake Friemel,

Jack Gray, Michael Koopmann, Jihun Yoon



Introduction – Who are we?

• Eric Christensen – Database Manager

• Zoe Davis – Documentation and Team Organizer

• Josh Dutchik – Frontend Designer and Backend Support

• Blake Friemel – Documentation and Client Interaction

• Jack Gray – Cloud and Systems Engineer

• Michael Koopmann – AI Development

• Jihun Yoon – Documentation and Backend Support



Introduction – What is our project?

• The goal of this project is to develop an advanced healthcare 

application using AI to predict allergens that can be used by a 

doctor to improve a patient's treatment plan

• By analyzing a patient's medical information, known allergies, 

and symptoms, the system predicts allergens and products that 

patients will likely be allergic to

• This system will be help doctors prescribe safe products and 

prevent adverse reactions



Problem Statement

Problem

• Medical care is hard to optimize 

for every individual (unique 

patient variables and 

medical history)

• Allergic reactions can be 

unpredictable and pose 

unforeseen risks in treatment

Solution

AI allergen prediction application

• Efficiency in diagnosis

• Increased accuracy/reduced errors

• Wider availability

• Remote diagnosis and monitoring

• Non-invasive testing



Project Components

• Frontend – Website (React application)

o Patient and doctor users

• Backend – Node.js Server

o Managed through MySQL and node.js

• Database – Amazon RDS Database

o Stores three tables: Doctor, patient, and products

• AI Model – Built using Keras and TensorFlow libraries.

o Stored on an S3 Bucket

o Trained using an obfuscated dataset

o Runs patient data to return likely allergens



Functional Requirements

• Website must allow patient users to...

o Navigate to the survey

o Input their typed data into the survey

o Select from the options provided by the UI

o Submit the survey

• Website must allow doctor users to...

o Input typed data (username, password, patient name, etc)

o Login to their account

o Search for a patient

o Run analysis of allergens



Functional Requirements

• The website itself must...
o Display an interactable GUI

o Output patient data

o Output predicted allergens

o Communicate with the backend to display relevant and 

accurate pages/information

o Be hosted on an EC2 instance and Google VM instance



Functional Requirements

• Backend (Node.js Server)

o Send and receive HTTP requests to and from the Amazon RDS database

o Send and receive JSON file format to and from the model

o Function calls triggered by frontend

• Database (Amazon RDS Database)

o Store patient, doctor, and product tables

o Send and receive HTTP requests to and from the backend



Functional Requirements

• AI Model

o Trained using an excel file

o Input and output JSON files

o Use rules of association to predict potential allergic reaction

o Output ingredients with over 70% likelihood of allergic reaction

o Output products that contain high-risk ingredients

o Must be stored on an S3 bucket to be pulled by backend



Non-Functional Requirements

• Website

o Intuitive and easy to navigate

o Survey reduces the amount of variability added to the data by formatting 

certain inputs

o Doctor accounts accessible to only medically licensed individuals

o Reliable and have little downtime

o Accessible from anywhere in the United States

o Accurate and relevant information

o Aesthetically pleasing (we are not design students)



Non-Functional Requirements
• Backend

o Communicate promptly within a short period of time

• Database

o Fields and tables should be clear and related to their stored variables

o Secure and require proper authentication and authorization

o Scalable in both vertical and horizontal dimensions

o Reasonable response time

• AI Model

o Maintains high level of prediction accuracy

o Retrainable

o Returns results in a timely manner (10 seconds or less)



Overall Project Visual Design



Amazon Web Services
• Frontend, backend, and AI model 

is hosted entirely on EC2 instance

o (GCP instance for comparison)

• Utilized Amazon RDS for our 

database

o Stores patient, doctor, and products 

table

• S3 Bucket to store model

o Size issues



Frontend Design
• React Application

• Changes variables and triggers functions in 

backend

• 5 Elements

o Home

▪ Navigate to log in and survey

o Sign up/Survey

▪ Patient inputs data to be run in model

o Login

▪ Checks doctor username and password -> navigates to 

doctor

o Doctor

▪ Doctor can search for patients and view patient data. 

Navigates to results

o Results

▪ Can cross references allergens with commonly used 

products for a list of products/medications to avoid
Home page



User Interaction
• Patient User

o Completes survey

▪ Inputs: E-mail, username, doctor code, 

name, gender, D.O.B., skin tone, state of 

residence, skin conditions

• Doctor User

o Logs in

o Searches for patients

o Views patient data

o Runs product analysis

o Signs out

Survey page



Backend Design
• Node.js Server

• GET, POST, DELETE 

requests

o HTTP requests to database

• Pulls AI Model using S3 

Bucket

o JSON file format to and 

from model



AI Model Design
• Built, compiled, and saved 

using Keras and TensorFlow 

libraries

• Jupyter Notebook

• Inputs patient data

• Outputs percentages of 

allergens

• Stored on an S3 Bucket

• 70% threshold (Changeable)



Project Demo



Frontend Testing

• Postman
o Verify the functionality from the frontend to the backend

o Verify the functionality and results of our API

o Directly interact with our database through HTTP requests

• React Developer Tools Extension
o Useful to see status of requests directly on web browser

o Allows us to efficiently inspect component heirarchy



Backend Testing

• Console logs would indicate where problems 

were occurring and if anything went wrong

• For each request we designed use cases for each 

possible outcome

• Postman Requests
o Similar to the frontend, we designed test suites for each 

request that was being made



Challenges and Solutions

• Connecting the EC2 Instance with the Backend
o Could not make requests to the EC2 instance to POST data 

to our database

o Solution: Corrected The URLs and Ports, corrected the 

package.js

• EC2 Instance ran out of storage

o Installing tensor flow would make the instance crash

o Solution: Updated our EBS volume to have more storage



Questions?


	Slide 1
	Slide 2: Introduction – Who are we?
	Slide 3: Introduction – What is our project?
	Slide 4: Problem Statement
	Slide 5: Project Components
	Slide 6: Functional Requirements
	Slide 7: Functional Requirements
	Slide 8: Functional Requirements
	Slide 9: Functional Requirements
	Slide 10: Non-Functional Requirements
	Slide 11: Non-Functional Requirements
	Slide 12: Overall Project Visual Design
	Slide 13: Amazon Web Services
	Slide 14: Frontend Design
	Slide 15: User Interaction
	Slide 16: Backend Design
	Slide 17: AI Model Design
	Slide 18: Project Demo
	Slide 19: Frontend Testing
	Slide 20: Backend Testing
	Slide 21: Challenges and Solutions
	Slide 22: Questions?

